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ABSTRACT
Objective: To determine whether polymorphisms of SLC22A1 and 
SLCO1B3 genes could predict imatinib (IM) response and chronic 
myeloid leukemia (CML) risk.

Methods: We genotyped SLC22A1 (c.480G > C, c.1222A > G) and 
SLCO1B3 (c.334T > G, c.699G > A) polymorphisms in 132 patients with 
CML and 109 sex- and age-matched healthy subjects. The patients were 
evaluated for cytogenetic response by standard chromosome banding 
analysis (CBA).

Results: Polymorphism analysis showed significant increased 
risk of IM resistance for SLC22A1c.1222AG (P = .03; OR = 2.2), 
SLCO1B3c.334TT/TG genotypes (P = .007; OR = 4.37) and 334T allele 

(P = .03; OR = 2.86). The double combinations of SLC22A1c.480CC 
and c.1222AG polymorphisms with SLCO1B3c.334TT/TG were 
significantly associated with complete cytogenetic response (CCyR) 
(P <.05; OR> 7). The interaction between all polymorphisms and 
smoking were associated with CML development and IM resistance 
(P ≤.04; OR> 3).

Conclusions: Our study results suggest the influence of SLC22A1 
and SLCO1B3 polymorphisms and the interaction of smoking on CML 
development and IM response.

Keywords: chronic myeloid leukemia, complete cytogenetic response, 
imatinib mesylate, SLC22A1, SLCO1B3, smoke

 

Chronic myeloid leukemia (CML) is a myeloproliferative 

disorder marked by the attendance of the Philadelphia 

(Ph) chromosome resulting from a balanced translocation 

between chromosomes 9 and 22, t (9; 22) (q34; q11), which 

creates a fusion oncogene, BCR-ABL1. This gene encodes 

a Bcr‐Abl1 chimeric protein with constitutively tyrosine 

kinase activity that leads to uncontrolled cell division.1 

Imatinib mesylate (IM; trade name, Glivec or Gleevec), 

a tyrosine kinase inhibitor (TKI), is a powerful Bcr‐Abl1–

targeting drug that is currently used as the first-line treat-

ment for patients with newly diagnosed CML in the chronic 

phase (CML-CP).2 

Despite significant improvements in clinical response rates 

and survival outcomes in patients with CML who undergo 

imatinib therapy, approximately 30% to 40% of patients de-

velop failure in the cytogenetic and molecular response.3,4 

Several resistance mechanisms have been proposed; 

the most important include gene amplification, clonal 
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chromosome abnormalities in ph + cells, and mutations in 

the tyrosine kinase domain of BCR-ABL1. Further, the de-

crease bioavailability of IM in leukemic cells has been pro-

posed as a major pharmacokinetic factor that participates in 

the development of resistance to IM.5 

Seven of 55 SLC gene families encode drug-carrier trans-

porters that participate in the influx of drugs into the cell.6 

The findings of 2 studies7,8 showed that the levels of plasma 

concentration of IM are important for clinical outcomes in 

patients with CML; besides, active-transport processes 

could mediate the concentration of IM into mononuclear 

cells. IM is a substrate for influx transporters such as 

SLC22A1 (solute carrier 22A1, organic cation transporter1, 

OCT1) (GenBank accession number; NC_000006.12) and 

SLCO1B3 (solute carrier organic anion transporter family 

member 1B3, organic anion transporting polypeptide 1B3 

[OATP1B3]) (NC_000012.12).9 

White et al10 found that the activity rate of SLC22A1 is as-

sociated with the achievement of major molecular response 

(MMR), so MMR was observed with an increase of trans-

porter activity. These investigators also showed that despite 

the decrease of SLC22A1 activity, the MMR was achieved 

with an elevated IM dose. Further, in patients achieving 

complete cytogenetic response (CCyR), the SLC22A1 

mRNA expression was significantly higher than in patients 

with partial cytogenetic response (PCyR) and patients with 

resistance to IM.11 It has been reported12 that SLC22A1 

c.480C > G (p. L160F, db SNP ID number; rs683369) single 

nucleotide polymorphism (SNP) affects IM pharmaco-

kinetics, event-free survival (EFS) duration, and rates of 

exposure to the drug. Another SLC22A1 polymorphism, 

c.1222A > G (p.M408V, dbSNP ID number;rs628031), influ-

ences the prevalence of poor response, duration of EFS, 

and overall survival (OS).13 

Another transporter, known as SLCO1B3, has a key 

role in the uptake of IM into hepatocytes and intracel-

lular IM accumulation in leukocytes.14 SLCO1B3 has 2 

major SNPs, including c.334T > G (p.Ser112Ala,dbSNP 

ID number; rs4149117) in exon 3 and c.699 G > A (p. 

Met233Ile,dbSNP ID number; rs7311358) in exon 6.15 

Some studies, such as de Lima et al,16 have found that 

the aforementioned polymorphisms are associated with 

nonresponse to IM. Other study reports, such as Sayyed  

et al,17 established that cigarette smoke inhibits the activity 

of drug transporters and alters their expression. Cigarette 

smoke directly inhibits activity of transporters, reduces the 

uptake function of the drug into the cell, and causes drug 

resistance. 

The biological response to carcinogens activates several 

metabolic pathways that are involved in exclusion, such 

as transporters; detoxification agents, such as drug-

metabolizing enzymes; and DNA repair. The polymorphisms 

of genes belonging to these pathways can modulate gene 

activity; however, carcinogens, including smoke, can modify 

the association of these polymorphisms with cancer risk 

and chemotherapy resistance.18 Several studies, such as 

Björk et al,19 have reported that benzene in cigarette smoke 

is associated with leukemia risk, and a relationship exists 

between cytogenetic abnormalities and AML risk in subjects 

who smoke. Some study reports, such as Kim HN et al,20 

have revealed that the association of GSTT1 polymorphisms 

with AML risk is dependent on smoking status. 

To our knowledge, no study in the literature has investigated 

the joint effect of the smoking (as a synergistic factor) and 

genetic polymorphisms in SLC22A1 and SLCO1B3 genes 

on treatment response and CML risk. Moreover, we have 

also analyzed the impact of SNP combinations on response 

to IM and CML susceptibility.

Materials and Methods

Study Population

In this study, peripheral blood specimens were collected 

from 132 Ph + CML patients undergoing IM therapy (300–

800 mg/day) at Arad Hospital and Saba Oncology Clinic 

in Tehran, Iran. This study was approved by the Research 

Ethics Committee of the Pasteur Institute of Iran, and spe-

cimens were used according to ethical standards (ethical 

approval no. IR.PII.REC.1397.56). Written informed consent 

was obtained from all patients and control individuals. 

The median duration of IM treatment was 46 months (range, 

10–175 months). Based on the response to IM therapy, 

the patients were classified into 2 groups: the responder 

group consisted of 58 patients who acquired a CCyR 

within 12 months from IM therapy, and the nonresponder 

group included 74 patients who had no CCyR. Moreover, 

venous blood specimens were obtained from 109 sex- and 

age-matched healthy individuals with the same ethnicity 
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and without medical history or hematological evidence of 

leukemia or other chronic diseases. Smoking criteria were 

described as follows: active smokers were people have 

smoked at least pack of cigarettes daily; passive smokers, 

those exposed to cigarette smoke or have smoked 1 to 2 

cigarettes daily; and never smokers, those who have never 

smoked. The characteristics of the participants are shown 

in Table 1.

Assessment of Response

Disease-phase definitions include chronic phase (CP), ac-

celerated phase (AP), and blastic phase (BP); also, CCyR 

were determined according to World Health Organization 

(WHO) criteria21 and European Leukemia Net (ELN) cri-

teria.22,23 The patients were evaluated at regular intervals 

for cytogenetic response using standard chromosome 

banding analysis (CBA) of bone-marrow-cell metaphases, 

as previously described.24,25 CCyR was described as 0% 

Ph + chromosome in at least 20 metaphases.

SNPs Genotyping

Genomic DNA was extracted from blood using the 

salting-out extraction technique.26 Genotype analysis was 

conducted by the PCR-restriction fragment length poly-

morphism (PCR-RFLP) and sequencing methods. Suitable 

enzymes were used to digest PCR products according to 

manufacturer instructions (Thermo Fisher Scientific Inc.). To 

confirm the quality of genotyping, 10% of the specimens 

were randomly sequenced; the results of both methods 

were consistent. Primer sequences, restriction enzymes, 

and PCR conditions are shown in Supplementary Table S1.

Statistical Analysis

Hardy-Weinberg equilibrium was calculated by comparing 

the observed and expected genotype frequencies for all 

SNPs using χ 2 testing. The distribution of baseline features 

between groups was compared for qualitative variables 

using χ 2 testing and for a quantitative variable (age) using 

t testing. In this study we used different genetic models 

for determining the association between all genotypes and 

alleles, with disease risk and response to IM determined 

using logistic regression test. The odds ratios (ORs), along 

with 95% confidence intervals (CIs), were also estimated. 

Linkage disequilibrium (LD) analysis and calculation of 

haplotype frequencies were performed using the soft-

ware HaploView ver. 4.2 AVAILABILITY: (https://www.

broadinstitute.org/haploview/haploview). The asso-

ciation between combined polymorphisms, and also 

polymorphisms–smoking interaction with CML and IM 

resistance risk, was determined using logistic regres-

sion analysis. Because several comparisons can lead to 

false-positive results, Bonferroni correction of P values was 

carried out. P values of less than .05 were considered stat-

istically significant. Statistical analysis was performed using 

SPSS software, version 22 (IBM Corporation).

Results

Baseline Characteristics of the Studied 
Subjects

The study-subjects cohort consisted of 132 patients with 

CML and 109 controls, of whom 56.1% of patients were in 

the IM nonresponder group and 43.9% in the IM responder 

group (Table 1). There was no significant difference in mean 

age in male or female participants between cases and con-

trols (P> .05). However, the mean age difference was sig-

nificant for male responders compared with nonresponders 

(39.55 vs 47.06; P = .02), as well as for male nonresponders 

compared with female nonresponders (39.55 vs 48.12; 

P = .20; data not shown). Smoking status was significantly 

different between cases and controls and also among drug 

response groups (P <.001). Moreover, there was a signifi-

cant difference regarding smoking in females and male 

participants, between patients and controls (P <.001), as 

well as between response groups (P = .001; P = .005), 

respectively.

Allelic and Genotypic Frequencies of SNPs

All of the SNPs were in agreement with Hardy-Weinberg 

equilibrium (HWE) in the CML patients and controls. The 

only exception was SLC22A1c.480G > C polymorphism, 

which was inconsistent with HWE only in patients. 

The distribution of the genotypes in cases and controls, 

as well as in IM response groups, is shown in Table 2. We 

used different genetic models to evaluate the relationship 

between SNPs with CML risk and response to IM. The fre-

quencies of genotypes and alleles of SLCO1B3 (c.334T > G, 

c.699G > A) and SLC22A1 (c.480G > C, c.1222A > G) 

polymorphisms were similar among patients with CML and 
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broadinstitute.org/haploview/haploview). The asso-

ciation between combined polymorphisms, and also 

polymorphisms–smoking interaction with CML and IM 

resistance risk, was determined using logistic regres-

sion analysis. Because several comparisons can lead to 

false-positive results, Bonferroni correction of P values was 

carried out. P values of less than .05 were considered stat-

istically significant. Statistical analysis was performed using 

SPSS software, version 22 (IBM Corporation).

Results

Baseline Characteristics of the Studied 
Subjects

The study-subjects cohort consisted of 132 patients with 

CML and 109 controls, of whom 56.1% of patients were in 

the IM nonresponder group and 43.9% in the IM responder 

group (Table 1). There was no significant difference in mean 

age in male or female participants between cases and con-

trols (P> .05). However, the mean age difference was sig-

nificant for male responders compared with nonresponders 

(39.55 vs 47.06; P = .02), as well as for male nonresponders 

compared with female nonresponders (39.55 vs 48.12; 

P = .20; data not shown). Smoking status was significantly 

different between cases and controls and also among drug 

response groups (P <.001). Moreover, there was a signifi-

cant difference regarding smoking in females and male 

participants, between patients and controls (P <.001), as 

well as between response groups (P = .001; P = .005), 

respectively.

Allelic and Genotypic Frequencies of SNPs

All of the SNPs were in agreement with Hardy-Weinberg 

equilibrium (HWE) in the CML patients and controls. The 

only exception was SLC22A1c.480G > C polymorphism, 

which was inconsistent with HWE only in patients. 

The distribution of the genotypes in cases and controls, 

as well as in IM response groups, is shown in Table 2. We 

used different genetic models to evaluate the relationship 

between SNPs with CML risk and response to IM. The fre-

quencies of genotypes and alleles of SLCO1B3 (c.334T > G, 

c.699G > A) and SLC22A1 (c.480G > C, c.1222A > G) 

polymorphisms were similar among patients with CML and 

healthy individuals (P> .05), indicating no relationship be-

tween these SNPs and CML risk (Table 2). 

The frequency of the major allele C and the minor allele G 

for SLC22A1c.480G > C was 0.88 and 0.12. respectively; 

for SLC22A1 c.1222A > G, the frequency of the major allele 

G and the minor allele A were 0.70 and 0.30, respectively. 

In the case of SLCO1B3c.699A > G, the frequency of major 

allele A and minor allele G was 0.93 and 0.07, respectively; 

also, for SLCO1B3c.334T > G, the frequency of major and 

minor alleles was 0.87 and 0.13, respectively. There was 

no significant difference in the genotype and allele fre-

quency of SLCO1B3c.699G > A and SLC22A1c.480G > C 

polymorphisms between IM responders and IM 

nonresponders (P> .05). 

The SLCO1B3c.334TG (codominant model) and 

SLCO1B3c.334 TG/TT genotypes (dominant model) were 

associated with IM resistance: patients with 334TG and 

334 TG/TT genotypes had a higher risk of resistance 

(P = .01, OR = 6.02; P = .007, OR = 4.37). There was also 

an increased risk of IM resistance in patients with the 334T 

allele (P = .03; OR = 2.86). SLC22A1c.1222 AA (recessive 

model) and SLC22A1c. 1222 AG genotypes (codominant 

model) were associated with IM response—those with the 

SLC22A1c.1222 AA genotype had decreased IM resistance 

risk (P = .04; OR = 0.25) and those with the SLC22A1c.1222 

AG genotype had increased resistance risk to IM (P = .03; 

OR = 2.20; Table 2). 

In female and male groups, there was no relationship be-

tween SLCO1B3 (c.334T > G, c.699G > A) and SLC22A1 

(c.480G > C, 1222A > G) SNPs with CML risk and IM 

response. The only exception was the AG genotype from 

SLC22A1 c.1222A > G SNP, which was associated with in-

crease of IM resistance risk in female participants, following 

the codominant model (P = .03; OR = 8.68; Supplementary 

Tables S2, S3, S4, S5).

Haplotyping

Haplotype analysis revealed a strong linkage disequilibrium 

between SLCO1B3 c.334T > G, c.699G > A polymorphisms 

(D′ = 1; r2=0.53; LOD = 25.5), and also between SLC22A1 

c.480G > C, c.1222A > G polymorphisms (D′ = 0.88; 

r2 = 0.2;, LOD = 16.4; Figure 1, Table 2). The SLCO1B3 

c.334G- c.699A haplotype was associated with decreased 

risk of IM response failure—its frequency was significantly 

lower in IM nonresponders than in responders (85.1% vs 

93.1%; P = .04, OR = 0.43). None of the haplotypes were 

Table 1. Baseline Features of the Studied Subject Individuals

Features Control Individuals Patients P Valuea IM Respondersb IM Nonresponders P Valuea

Individuals, no. 109 132  58 74  
Age (y)
Sex, mean (SD) 43.27 (15.23) 44.6 (15.08) .65 46.02 (14.44) 43.49 (15.57) .34
 Male 42.44 (14.6) 43.05 (14.2) .81 47.06 (13.6) 39.55 (13.94) .02
 Female 45.12 (15.9) 46.63 (16.05) .66 44.43 (15.8) 48.12 (16.29) .40
Sex, no. (%)
 Male 57 (52.3%) 75 (56.8%) .48 35 (60.3%) 40 (54.1%) .47
 Female 52 (47.7%) 57 (43.2%) 23 (39.7%) 34 (45.9%)
Smoking status, no (%)
 Total Active 10 (9.2%) 35 (26.5%) <.001 9 (15.5%) 26 (35.1%) <.001

Passive 9 (8.3%) 35 (26.5%) 9 (15.5%) 26 (35.1%)
Never 90 (82.6%) 62 (47%) 40 (69.0%) 22 (29.7%)

  Males Active 9 (15.8%) 33 (44.0%) <.001 9 (25.7%) 24 (60.0%) .005 
Passive 5 (8.8%) 11 (14.7%) 5 (14.3%) 6 (15.0%)
Never 43 (75.4%) 31 (41.3%) 21 (60.0%) 10 (25.0%)

  Females Active 1 (1.9%) 2 (3.5%) <.001 0 2 (5.9%) .001 
Passive 4 (7.7%) 24 (42.1%) 4 (17.4%) 20 (58.8%)
Never 47 (90.4%) 31 (54.4%) 19 (82.6%) 12 (35.3%)

Follow- up duration (mo)
 Mean (SD)    62.67 (36.986) 57.70 (30.518)  
IM treatment duration (mo)
 Mean (SD)    58.88 (35.635) 50.65 (23.105)  

IM; imatinib mesylate.
aP <.05 (bolded) was considered statistically significant. 
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Table 2.  Association Analyses Between SLC22A1, SLCO1B3 SNP Genotypes and Haplotypes with 
Imatinib Response and CML Risk

SNP Model Genotype 
Allele

CCyR, 
no. (%)a 

Non-
CCyRb

OR (95% 
CI)c

Control 
Individualsd 

Patientse P Value OR (95% CI)

SLC22A1c.480G > C  
Codominant CC 46 (79.3) 62 (83.8)  1 [reference] 82 (75.9) 108 (81.8)  1 [reference]

GC 11 (19.0) 9 (12.2) .51 0.58 
(0.20–1.69)

23 (21.3) 20 (15.2) .38 0.61 (0.29–1.25)

GG 1 (1.7) 3 (4.0)  1.89 (0.16–
21.83)

3 (2.8) 4 (3.0)  1.17 (0.23–6.02)

Missing data      1    
Dominant CC 46 (79.3) 62 (83.8)  1 [reference] 82 (75.9) 108 (81.8)  1 [reference]

GC/GG 12 (20.7) 12 (16.2) .48 0.70 
(0.26–1.87)

26 (24.1) 24 (18.2) .24 0.67 (0.34–1.32)

Recessive CC/GC 57 (98.3) 71 (96.0)  1 [reference] 105 (97.2) 128 (97.0)  1 [reference]
GG 1 (1.7) 3 (4.0) .58 2.00 (0.17–

22.99)
3 (2.8) 4 (3.0) .76 1.28 (0.25–6.54)

 Allele C 103 (89.0) 133 (90.0) [reference] 1 187 (86.6) 236 (89.4) [reference] 1
G 13 (11.0) 15 (10.0) .69 0.84 

(0.35–1.99)
29 (13.4) 28 (10.6) .36 0.75(0.41–1.37)

SLC22A1c.1222A > G  
Codominant GG 30 (51.7) 36 (48.6)  1 [reference] 52 (47.7) 66 (50.0)  1 [reference]

AG 21 (36.2) 32 (43.2) .03c 2.20 
(0.92–5.27)

46 (42.2) 53 (40.2) .46 1.01 (0.57–1.81)

AA 7 (12.1) 6 (8.1)  0.33 
(0.08–1.26)

11 (10.1) 13 (9.8)  0.54 (0.20–1.47)

Dominant GG 30 (51.7) 36 (48.6)  1 [reference] 52 (47.7) 66 (50.0)  1 [reference]
AG/AA 28 (48.3) 38 (51.4) .36 1.43 

(0.66–3.08)
57 (52.3) 66 (50.0) .73 0.91 (0.52–1.57)

Recessive GG/AG 51 (87.9) 68 (91.9)  1 [reference] 98 (89.9) 119 (90.2)  1 [reference]
AA 7 (12.1) 6 (8.1) .04c 0.25 

(0.07–0.94)
11 (10.1) 13 (9.8) .21 0.54 (0.21–1.41)

Allele G 81 (69.8) 104 (70.3)  1 [reference] 150 (68.8) 185 (70.1)  1 [reference]
A 35 (30.2) 44 (29.7) .83 0.94 

(0.52–1.69)
68 (31.2) 79 (29.9) .41 0.838 

(0.55–1.28)
SLCO1B3c.699G > A  
 AA 54 (93.1) 64 (86.5)  1 [reference] 88 (80.7) 118 (89.4)  1 [reference]
 GA 4 (6.9) 10 (13.5) .13 2.85 (0.74–

11.08)
21 (19.3) 14 (10.6) .08 0.50 (0.23–1.10)

Allele A 112 (96.6) 138 (93.2)  1 [reference] 197 (90.4) 250 (94.7)  1 [reference]
G 4 (3.4) 10 (6.8) .14 2.67 

(0.72–9.83)
21 (9.6) 14 (5.3) .10 0.53 (0.25–1.13)

SLCO1B3c.334T > G  
Codominant GG 51 (87.9) 52 (70.3)  1 [reference] 79 (72.5) 103 (78)  1 [reference]

TG 6 (10.3) 22 (29.7) .01c 6.02 (1.88–
19.26)

28 (25.7) 28 (21.2) .41 0.70 (0.36–1.34)

TT 1 (1.7) 0  NA 2 (1.8) 1 (0.8)  0.34 (0.02–4.68)
Dominant GG 51 (87.9) 52 (70.3)  1 [reference] 79 (72.5) 103 (78.0)  1 [reference]

TG/TT 7 (12.1) 22 (29.7) .007c 4.37 (1.49–
12.84)

30 (27.5) 29 (22.0) .22 0.67 (0.35–1.28)

 Recessive GG/TG 57 (98.3) 74 (100)  1 [reference] 107 (98.2) 131 (99.2)  1 [reference]
TT 1 (1.7) 0 1 NA 2 (1.8) 1 (0.8) .44 0.37 (0.03–5.09)

 Allele G 108 (0.93) 126 (85.1)  1 [reference] 186 (85.3) 234 (88.6)  1 [reference]
T 8 (6.9) 22 (14.9) .03c 2.86 

(1.11–7.36)
32 (14.7) 30 (11.4) .20 0.68 (0.38–1.22)

Figure 1

Haploview linkage disequilibrium (LD) map of studied-genes 

polymorphisms: The plots show the r2 values. A, LD Plot of SLC22A1 

(c.480G > C, c.1222A > G) Polymorphisms (GenBank accession 

number; NC_000006.12). B, LD Plot of SLCO1B3 (c.334T > G, 

c.699G > A) Polymorphisms (SLCO1B3; NC_000012.12).
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associated with CML risk. The haplotype frequency of 

SLCO1B3 and SLC22A1 polymorphisms are shown  

in Table 2.

Assessment of Combined Genotypes

We considered AA genotype to be a reference geno-

type for SLCO1B3c.699A > G, an overdominant 

model for SLC22A11222A > G and dominant model 

for SLC22A1c.480G > C, SLCO1B3c.334T > G 

polymorphisms, to evaluate the joint effect of double 

SNP combination on CML susceptibility and CCyR to 

IM. An increased risk of non-CCyR to IM was observed 

in patients carrying the double combination of SLCO1B3 

c.334TG/TT genotypes with any of SLC22A1 c.480CC 

and SLC22A1c.1222AG genotypes (P = .006, OR = 8.84; 

P = .05, OR = 7.73, respectively; Table 3). In female and 

male groups, there were no significant association be-

tween the double combined genotypes of the SNPs with 

increased risk of IM resistance and CML development 

(Supplementary Tables S6–S8).

Gene-Smoking Interaction

The effect of the interaction between SLC22A1, SLCO1B3 

SNPs with smoking on the risk of IM resistance and 

CML risk are shown in Tables 4 and 5, respectively. 

The reference group was nonsmoker subjects with any 

of the SLC22A1c.480 CC, SLC22A1c.1222GG/AA, 

Figure 1

Haploview linkage disequilibrium (LD) map of studied-genes 

polymorphisms: The plots show the r2 values. A, LD Plot of SLC22A1 

(c.480G > C, c.1222A > G) Polymorphisms (GenBank accession 

number; NC_000006.12). B, LD Plot of SLCO1B3 (c.334T > G, 

c.699G > A) Polymorphisms (SLCO1B3; NC_000012.12).

Gene Haplotype CCyR N 
(%)

Non-
CCyR N 

(%)

P Value OR (95% CI) Controls, no. 
(%)

Patients, 
no. (%)

P Value OR (95% CI)

SLC22A1 C-G 81 (69.8) 103 (69.5) .97 0.99 (.58–1.68) 184 (69.6) 147 (67.3) .59 1.11 (0.75–1.63)
C-A 22 (19.0) 30.1 (20.3) .79 1.09 

(0.59–2.01)
52 (19.8) 42 (19.4) .91 1.03 (0.65–1.61)

G-A 13 (11.1) 13.9 (9.4) .64 0.83 
(0.37–1.84)

27 (10.1) 26 (11.8) .55 0.84 (0.47–1.50)

SLCO1B3 G-A 108 (93.1) 126 (85.1) .04c 0.43 (0.18–
0.992)

234 (86.6) 186 (85.3) .27 1.34 (0.79–2.29)

T-A 4 (3.4) 12 (8.1) .12 2.47 
(0.77–7.87)

14 (5.3) 21 (9.6) .07 0.53 (0.26–1.06)

T-G 4 (3.4) 10 (6.8) .23 2.03 
(0.62–6.64)

16 (6.1) 11 (20.7) .63 1.21 (0.55–2.67)

SNP, single nucleotide polymorphism; CCyR, complete cytogenetic response;OR, odds ratio; CI, confidence interval; SLC22A1, solute carrier 22A1 (GenBank accession number; 
NC_000006.12); SLCO1B3, solute carrier organic anion transporter family member 1B3(NC_000012.12); NA, nonapplicable.
an = 58.
bn = 74.
cP <.05 was considered statistically significant. Logistic regression model adjusted for age, sex, and smoking status.
dn = 109.
en = 132.
fD′=0.88; LOD = 16.4; r2=0.23.
gD′=1; LOD = 25.5; r2 =0.53.

Table 2. Continued
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SLCO1B3c.699AA, and SLCO1B3c.334GG genotypes. 

We considered the sum of active and passive groups as 

smokers. The risk of IM resistance increased in the smoker 

subjects with the SLC22A1c.480CC; SLC22A1c.1222AA/

GG,AG; SLCO1B3c.699AA; and SLCO1B3c.334GG,TG/

TT genotypes (P <.001; OR = 7.03, 12.67, 16.74, 5.58, 8.13, 

and 22.09, respectively). Moreover, nonsmoker patients 

with the SLCO1B3c.334TG/TT genotype had an increased 

risk of IM resistance (P = .04; OR = 5.86). We also ob-

served that the SLC22A1c.480CC; SLC22A1c.1222AA/

GG,AG; and SLCO1B3c.334GG,TG genotypes in male 

smoker participants were associated with increased resist-

ance to IM (P = .01, OR = 6.09; P = .03, OR = 8.33; P = .03, 

OR = 9.36; P = .02, OR = 5.98; and P = .04, OR = 24.10, 

respectively). The female smoker participants with geno-

types including SLC22A1c.480CC, SLC22A1c.1222AA/GG, 

SLCO1B3c.699AA, and SLCO1B3c.334GG genotypes had 

an increased risk of resistance to IM (P = .004, OR = 11.74; 

P <.001, OR = 27.54; P = .004, OR = 9.42; and P = .004, 

OR = 11.22, respectively; Table 4). 

Regarding CML risk, the smoker subjects carrying 

SLC22A1c.480CC; SLC22A1c.1222AA/GG, AG; 

SLCO1B3c.699AA; and SLCO1B3c.334GG genotypes had 

an increased risk for CML development (P <.001, OR = 5.48; 

P < .001, OR = 8.67; P = .01, OR = 4.09; P <.001, OR = 5.59; 

and P <.001, OR = 6.18, respectively). The smoker fe-

males with SLC22A1c.480CC, SLC22A1c.1222AA/GG, 

Table 3. Combined SLC22A1 and SLCO1B3 SNP Genotypes and Imatinib Response

SNP_SNP Combination CCyR, 
no. (%)a

Non-CCyR, 
no. (%)b

Adjusted OR 
(95% CI)

P Valueb P Value, 
Bonferroni-
Corrected

SLC22A1c.1222A > G SLC22A1c.480G > C   
 GG/AA CC 32 (55.2%) 39 (52.7%) 1 [reference]  >.99

GG/GC 5 (8.6%) 3 (4.1%) 0.33 (0.06–1.72) .33 >.99
 AG CC 14 (24.1%) 23 (31.1%) 2.61 (1.00–6.85) .05 .31

GG/GC 7 (12.1%) 9 (12.2%) 1.69 (0.48–5.98) .48 >.99
SLCO1B3c.699G > A SLC22A1c.480G > C   
 AA CC 42 (72.4%) 53 (71.6%) 1 [reference]   

GG/GC 12 (20.7%) 11 (14.9%) 0.64 (0.23–1.78) .39 >.99
 GA CC 4 (6.9%) 9 (12.2%) 2.06 (0.50–8.49) .32 >.99

GG/GC 0 1 (1.4%) NA >.99 >.99
SLCO1B3c. 334T > G SLC22A1c.480G > C     
 GG CC 42 (72.4%) 41 (55.4%) 1 [reference]   

GG/ GC 9 (15.5%) 11 (14.9%) 1.29 (0.43–3.85) .65 >.99
 TG/TT CC 4 (6.9%) 21 (28.4%) 8.84 (2.33–33.49) .001 .006d

GG/ GC 3 (5.2%) 1 (1.4%) 0.29 (0.02–3.83) .35 >.99
SLCO1B3c. 699G > A SLC22A1c.1222A > G  
 AA GG/AA 35 (60.3%) 35 (47.3%) 1 [reference]   

AG 19 (32.8%) 29 (39.2%) 3.20 (1.28–8.05) .01 .78
 GA GG/AA 2 (3.4%) 7 (9.5%) 6.85 (1.02–45.93) .048 .29

AG 2 (3.4%) 3 (4.1%) 3.52 (0.41–30.37) .25 >.99
SLCO1B3c. 334T > G SLC22A1c.1222A > G  
 GG GG/AA 34 (58.6%) 29 (39.2%) 1 [reference]   

AG 17 (29.3%) 23 (31.1%) 2.86 (1.09–7.47) .03 .19
 TG/TT GG/AA 3 (5.2%) 13 (17.6%) 6.54 (1.34–31.83) .02 .12

AG 4 (6.9%) 9 (12.2%) 7.73 (1.69–35.36) .008 .048d

SLCO1B3c. 334T > G SLCO1B3c. 699G > A      
 GG AA 51 (87.9%) 52 (70.3%) 1 [reference]   

GA 0 0 NA NA  
 TG/TT AA 3 (5.2%) 12 (16.2%) 5.48 (1.23–24.35) .02 .15

GA 4 (6.9%) 10 (13.5%) 3.55 (0.89–14.20) .07 .44

SNP, single nucleotide polymorphism; CCyR, complete cytogenetic response; OR, odds ratio; CI, confidence interval; SLC22A1, solute carrier 22A1 (GenBank accession number; 
NC_000006.12); SLCO1B3, solute carrier organic anion transporter family member 1B3(NC_000012.12); 
an = 58.
bn = 74.
cLogistic regression model adjusted for age, sex, and smoking status. 
dP <.05 was considered statistically significant.
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Table 4. Gene-Smoking Interaction and Imatinib Response in Patient Groups

SNP Current or 
Ever Smoking

CCyR, no. (%) Non-CCyR, 
no. (%)

Adjusted OR (95% CI) P Valuea,b P Value,, 
Bonferroni 
correctedb

Patientsc

SLC22A1c.480G > C
 CC N 33 (56.9%) 18 (24.3%) 1 [reference]   

Y 13 (22.4%) 44 (59.5%) 7.03 (2.93–16.87) <.001 <.001b

 GC/GG N 7 (12.1) 4 (5.4%) 1.06 (0.26–4.28) .93 >.99
Y 5 (8.6%) 8 (10.8%) 3.49 (0.96–12.70) .06 .23

SLC22A1c.1222A > G
 GG/AA N 24 (41.4%) 6 (8.1%) 1 [reference]   

Y 13 (22.4%) 36 (48.6%) 12.67 (4.07–39.43) <.001 <.001b

 AG N 16 (27.6%) 16 (21.6%) 4.22 (1.32–13.45) .01 .06
Y 5 (8.6%) 16 (21.6%) 16.74 (4.10–68.43) <.001 <.001b

SLCO1B3c.699G > A
 AA N 36 (62.1%) 19 (25.7%) 1 [reference]   

Y 18 (31.0%) 45 (60.8%) 5.58 (2.45–12.74) <.001 <.001b

 GA N 4 (6.9%) 3 (4.1%) 1.69 (0.33–8.63) .53 >.99
Y 0 7 (9.5%) NA >.99 >.99

SLCO1B3c.334T > G
 GG N 35 (60.3%) 14 (18.9%) 1 [reference]   

Y 16 (27.6%) 38 (51.4%) 8.13 (3.14–21.02) <.001 <.001b

 TG/TT N 5 (8.6%) 8 (10.8%) 5.86 (1.50–22.89) .01 .04b

Y 2 (3.4%) 14 (18.9%) 22.09 (4.22–115.73) <.001 <.001b

Femaled 
SLC22A1c.480G > C
 CC N 16 (69.6%) 9 (26.5%) 1 [reference]   

Y 3 (13.0%) 19 (55.9%) 11.74 (2.66–51.77) .001 .004b

 GC/GG N 3 (13.0%) 3 (8.8%) 2.03 (0.32–12.88) .45 >.99
Y 1 (4.3%) 3 (8.8%) 5.03 (0.45–56.58) .19 .76

SLC22A1c.1222A > G
 GG/AA N 12 (52.2%) 2 (5.9%) 1 [reference]   

Y 4 (17.4%) 18 (52.9%) 27.54 (4.28–177.29) <.001 <.001b

 AG N 7 (30.4%) 10 (29.4%) 8.75 (1.45–52.69) .02 .07
Y 0 4 (11.8%) NA >.99 >.99

SLCO1B3c.699G > A
 AA N 19 (82.6%) 10 (29.4%) 1 [reference]   

Y 4 (17.4%) 20 (58.8%) 9.42 (2.52–35.27) .001 .004b

 GA N 0 2 (5.9%) NA >.99 >.99
Y 0 2 (5.9%) NA >.99 >.99

SLCO1B3c.334T > G
 GG N 19 (82.6%) 9 (26.5%) 1 [reference]   

Y 3 (13.0%) 16 (47.1%) 11.22 (2.59–48.66) .001 .004b

 TG/TT N 0 3 (8.8%) NA >.99 >.99
Y 1 (4.4%) 6 (17.6%) 12.47 (1.28–121.70) .03 .12

Malee

SLC22A1c.480G > C
 CC N 17 (48.6%) 9 (22.5%) 1 [reference] [reference]  

Y 10 (28.6%) 25 (62.5%) 6.09 (1.86–19.88) .003 .01b

 GC/GG N 4 (11.4%) 1 (2.5%) 1.04 (0.09–12.25) .97 >.99
Y 4 (11.4%) 5 (12.5%) 2.89 (0.55–15.03) .21 .83

SLC22A1c.1222A > G
 GG/AA N 12 (34.3%) 4 (10.0%) 1 [reference]   

Y 9 (25.7%) 18 (45.0%) 8.33 (1.82–38.13) .008 .03b

 AG N 9 (25.7%) 6 (15.0%) 2.66 (0.52–13.70) .24 .97
Y 5 (14.3%) 12 (30.0%) 9.36 (1.78–49.24) .008 .03b

SLCO1B3c.699G > A

Science

www.labmedicine.com Lab Medicine 2021;52;584–596  591 
DOI: 10.1093/labmed/lmab023

D
ow

nloaded from
 https://academ

ic.oup.com
/labm

ed/article/52/6/584/6299328 by guest on 22 August 2023



SLCO1B3c.699AA, and SLCO1B3c.334GG genotypes 

had an increased risk of CML development (P = .004, 

OR = 14.49; P < .001, OR = 13.19; P = .004, OR = 7.71; 

and P = .02, OR = 5.8, respectively). Also, the car-

riers of SLC22A1c.480CC; SLC22A1c.1222AA/GG,AG; 

SLCO1B3c.699AA, and SLCO1B3c.334GG genotypes 

in male smokers had an increased risk of CML (P = .004, 

OR = 3.92; P <.001, OR = 6.75; P = .036, OR = 4.23; 

P <.001, OR = 4.77; and P <.001, OR = 6.66, respectively; 

Table 5).

Discussion

Many studies have been carried out to identify pharma-

cogenetic factors that predict IM treatment outcomes 

in patients with CML. To our knowledge, this is the first 

study that evaluates the association of 4 polymorphisms 

in SLC22A1 and SLCO1B3, along with SNP combin-

ations and SNP-smoking interaction, with the risk of 

CML development and IM resistance in the Iranian popu-

lation. In this study, minor allele frequency (MAF) of the 

SLC22A1c.480G > C, c.1222A > G, SLCO1B3c.699G > A, 

and c.334T > G polymorphisms, compared with other 

populations (1000 Genomes Project Phase 3) was closer to 

American, African, South Asian, and European populations, 

respectively (Ensembl.org).

An important finding of our study was the lower mean 

age of male nonresponders than male responders. Some 

studies, such as Singh et al,27 have shown that younger 

patients have a better response to the drug, compared with 

older patients. However, the results of a more recent study28 

showed no difference in achieving the optimal response 

among elderly patients than younger ones. Based on our 

findings, a significant association was observed between 

SLC22A1c.1222AA with higher CCyR achievement. A sig-

nificant association between SLC22A1c.1222A > G with IM 

response was revealed by another study report29 as well. 

In contrast to our results, there are conflicting findings in 

the literature. For instance, Makhtar et al30 found that the 

SLC22A1c.1222AA genotype, together with 8-bp inser-

tion and 3-bp deletion, and M420del alleles increased the 

risk of resistance to IM. Also, Vaidya et al31 and Takahashi 

et al32 reported the association of the GG genotype of 

SLC22A1c.1222 SNP with better response to IM. 

Some study reports found no relationship between this 

polymorphism and IM response.33,34 These findings may 

be due to the different ethnicities of the studied popu-

lations.35 Our findings showed no association between 

SLC22A1c.408G > C polymorphism and IM treatment 

response, which is consistent with the findings of 2 

studies36,37 and contradicts other findings.30,38 

We analyzed 2 known polymorphisms in the SLCO1B3 

gene, namely, c.699G > A and C.334T > G, that are related 

SNP Current or 
Ever Smoking

CCyR, no. (%) Non-CCyR, 
no. (%)

Adjusted OR (95% CI) P Valuea,b P Value,, 
Bonferroni 
correctedb

 AA N 17 (48.6%) 9 (22.5%) 1 [reference]   
Y 14 (40.0%) 25 (62.5%) 3.80 (1.27–11.38) .02 .07

 GA N 4 (11.4%) 1 (2.5%) 0.33 (0.03–3.82) .38 >.99
Y 0 5 (12.5%) NA >.99 >.99

SLCO1B3c.334T > G
 GG N 16 (45.7%) 5 (12.5%) 1 [reference]   

Y 13 (37.1%) 22 (55.0%) 5.98 (1.68–21.33) .006 .02b

 TG N 5 (14.3%) 5 (12.5%) 2.74 (0.52–14.42) .23 .94
Y 1 (2.9%) 8 (20.0%) 24.10 (2.25–258.24) .009 .04b

SNP, single nucleotide polymorphism; CCyR, complete cytogenetic response; OR, odds ratio; CI, confidence interval; SLC22A1, solute carrier 22A1 (GenBank accession number; 
NC_000006.12); SLCO1B3, solute carrier organic anion transporter family member 1B3(NC_000012.12). 
aP-value logistic regression model adjusted for age status.
bP <.05 was considered statistically significant.
cn = 132.
dn = 57.
en = 75.
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An important finding of our study was the lower mean 

age of male nonresponders than male responders. Some 

studies, such as Singh et al,27 have shown that younger 

patients have a better response to the drug, compared with 

older patients. However, the results of a more recent study28 

showed no difference in achieving the optimal response 

among elderly patients than younger ones. Based on our 

findings, a significant association was observed between 

SLC22A1c.1222AA with higher CCyR achievement. A sig-

nificant association between SLC22A1c.1222A > G with IM 

response was revealed by another study report29 as well. 

In contrast to our results, there are conflicting findings in 

the literature. For instance, Makhtar et al30 found that the 

SLC22A1c.1222AA genotype, together with 8-bp inser-

tion and 3-bp deletion, and M420del alleles increased the 

risk of resistance to IM. Also, Vaidya et al31 and Takahashi 

et al32 reported the association of the GG genotype of 

SLC22A1c.1222 SNP with better response to IM. 

Some study reports found no relationship between this 

polymorphism and IM response.33,34 These findings may 

be due to the different ethnicities of the studied popu-

lations.35 Our findings showed no association between 

SLC22A1c.408G > C polymorphism and IM treatment 

response, which is consistent with the findings of 2 

studies36,37 and contradicts other findings.30,38 

We analyzed 2 known polymorphisms in the SLCO1B3 

gene, namely, c.699G > A and C.334T > G, that are related 

Table 5. Gene-Smoking Interaction and CML Risk in All Subjects, the Female Group, and the Male Group

SNP Current or Ever 
Smoking

Controls Patients Adjusted OR 
(95% CI)

P Valuea,b P Value, Bonferroni 
Correctedb

Subjectsc 
SLC22A1c.480G > C
 CC N 68 (63.1%) 51 (38.5%) 1 [reference]   

Y 14 (13.1%) 57 (43.2%) 5.48 (2.73–10.97) <.001 >.99
 GC/GG N 21 (19.41%) 11 (8.3%) 0.69 (0.30–1.56) .37 >.99

Y 5 (4.6%) 13 (9.8%) 3.44 (1.15–10.32) .03 .11
SLC22A1c.1222A > G
 GG/AA N 53 (48.6%) 30 (22.7%) 1 [reference]   

Y 10 (9.2%) 49 (37.1%) 8.67 (3.84–19.59) <.001 <.001
 AG N 37 (33.9%) 32 (24.2%) 1.55 (0.80–2.98) .19 .77

Y 9 (8.3%) 21 (15.9%) 4.09 (1.64–10.20) .003 <.01
SLCO1B3c.699G > A
 AA N 73 (67.0%) 55 (41.7%) 1 [reference]   

Y 15 (13.8%) 63 (47.7%) 5.59 (2.86–10.93) <.001 <.001
 GA N 17 (15.6%) 7 (5.3%) 0.55 (0.21–1.41) .21 .85

Y 4 (3.7%) 7 (5.3%) 2.34 (0.65–8.46) .19 .78
SLCO1B3c.334T > G
 GG N 67 (61.5%) 49 (37.1%) 1 [reference]   

Y 12 (11.0%) 54 (40.9%) 6.18 (2.96–12.89) <.001 <.001
 TG/TT N 23 (21.1%) 13 (9.8%) 0.77 (0.36–1.68) .52 >.99

Y 7 (6.4%) 16 (12.1%) 3.15 (1.20–8.30) .02 <.08
Femaled 
SLC22A1c.480G > C
 CC N 33 (63.5%) 25 (43.9%) 1 [reference]   

Y 2 (3.8%) 22 (38.6%) 14.49 (3.11–67.45) .001 .004
 GC/GG N 14 (26.9%) 6 (10.5%) 0.57 (0.19–1.69) .31 >.99

Y 3 (5.8%) 4 (7.0%) 1.72 (0.35–8.46) .51 >.99
SLC22A1c.1222A > G
 GG/AA N 25 (48.1%) 14 (24.6%) 1 [reference]   

Y 3 (5.8%) 22 (38.6%) 13.19 (3.34–52.13) <.001 <.001
 AG N 22 (42.3%) 17 (29.8%) 1.42 (0.56–3.60) .46 >.99

Y 2 (3.8%) 4 (7.0%) 3.54 (0.57–21.85) .17 .69
SLCO1B3c.699G > A
 AA N 38 (73.1%) 29 (50.9%) 1 [reference]   

Y 4 (7.7%) 24 (42.1%) 7.71 (2.40–24.75) .001 .004
 GA N 9 (17.5%) 2 (3.5%) 0.28 (0.05–1.41) .12 .49

Y 1 (1.9%) 2 (3.5%) 2.56 (0.22–29.78) .45 >.99
SLCO1B3c.334T > G
 GG N 35 (67.3%) 28 (49.1%) 1 [reference]   

Y 4 (7.7%) 19 (33.3%) 5.80 (1.76–19.07) .004 .02
 TG/TT N 12 (23.1%) 3 (5.3%) 0.29 (0.07–1.17) .08 .33

Y 1 (1.9%) 7 (12.3%) 8.46 (0.98–73.18) .05 .21
Malee 
SLC22A1c.480G > C
 CC N 35 (62.5%) 26 (37.4%) 1 [reference]   

Y 12 (21.4%) 35 (46.7%) 3.92 (1.71–8.98) .001 .004
 GC/GG N 7 (12.5%) 5 (6.7%) 0.95 (0.26–3.39) .99 >.99

Y 2 (3.6%) 9 (12%) 6.01 (1.19–30.31) .03 .12
SLC22A1c.1222A > G
 GG/AA N 28 (49.1%) 16 (21.3%) 1 [reference]   

Y 7 (12.3%) 27 (36.0%) 6.75 (2.40–18.96) <.001 <.001
 AG N 15 (26.3%) 15 (20.0%) 1.75 (0.68–4.49) .25 .99

Y 7 (12.3%) 17 (22.7%) 4.23 (1.45–12.40) .009 .04
SLCO1B3c.699G > A
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to IM response. Although no association was found be-

tween the c.699G > A SNP and CCyR, a strong association 

was observed between the c.334T > G SNP and CCyR 

because the patients with the c.334TT/TG genotype (dom-

inant genetic model) showed statistically significant lack of 

response (P = .007). Nair et al39 showed the relationship be-

tween SLCO1B3c.334TT genotype and failure of CCyR, and 

de Lima et al16 reported an increased risk of IM resistance in 

patients with SLCO1B3c.334TT and c.699GG genotypes. 

We were intrigued to discover that, in our patients and the 

Nair et al study,39 the frequency of the TT genotype was 

very low (0.7% and 1.96%, respectively), whereas in the de 

Lima et al16 study, was approximately 56%, which is similar 

to genotypic variation in other populations.15 Inconsistent 

with our findings, some study reports showed no associ-

ation between SLCO1B3c. 334T > G with clinical response 

to IM.14 Other study results found a relationship between 

this polymorphism with IM clearance40 and its intracellular 

concentration,9 whereas in a recent study report, no impact 

of pharmacogenetic items, such as SLCO1B3c.699G > A, 

c.334T > G, was found in IM pharmacokinetics in Chinese 

patients with CML.41 In our study findings, haplotype 

analysis showed no association between haplotypes 

with response to IM, except the 334G-699A haplotype 

in SLCO1B3, as frequency of 334G-699A haplotype in 

nonresponder patients was lower than in responders, which 

suggests a protective role on IM resistance risk. 

In accordance with our results, Kim DHD et al38 found no 

association between SLC22A1c.480G > C, 1222A > G, 

and 156T > C haplotypes and major cytogenetic response 

(MCyR), CCyR, loss of response (LOR), or treatment failure. 

Moreover, in our study results, we showed a strong com-

plete linkage disequilibrium (D′ = 1, r2=0.53, LOD = 25.5) 

between SLCO1B3 SNPs, similar to the findings of other 

studies.9,15,16 In the present study, we found no statistically 

significant association between these SNPs and their com-

binations with CML risk. These findings are in concordance 

with those of de Lima et al,16 regarding the association of 

SLCO1B3 polymorphisms and CML risk. 

We observed considerable differences between the male 

and female groups. First, the mean age of nonresponder 

females was significantly higher than that in nonresponder 

males (48.1 years vs 39.5 years). Secondly, the female 

group with the SLC22A1c.1222AG genotype has signifi-

cantly increased risk of IM resistance, unlike the group of 

males with that genotype. Although these results have not 

been reported so far, these differences between females 

and males appear to be due to the effect of female hor-

mones, such as progesterone, on drug transporters.

Some study reports, such as Vasconselos et al,42 indicate 

that an efflux transporter, P-glycoprotein (Pgp), has low ac-

tivity in young females and that synthetic progestins inhibit 

Pgp, in vitro and ex vivo. However, there is no report of such 

effect on influx transporters. 

Our study is the first in the literature to show the joint effect 

of influx-transporter genes and smoking on CML risk and IM 

resistance. In general, few studies have been conducted on 

SNP Current or Ever 
Smoking

Controls Patients Adjusted OR 
(95% CI)

P Valuea,b P Value, Bonferroni 
Correctedb

 AA N 35 (61.4%) 26 (34.7%) 1 [reference]   
Y 11 (19.3%) 39 (52.0%) 4.77 (2.06–11.06) <.001 <.001

 GA N 8 (14.0%) 5 (6.7%) 0.85 (0.25–2.91) .79 >.99
Y 3 (5.3%) 5 (6.7%) 2.25 (0.49–10.26) .30 >.99

SLCO1B3c.334T > G
 GG N 32 (56.1%) 21 (28.0%) 1 [reference]   

Y 8 (14.0%) 35 (46.7%) 6.66 (2.59–17.14) <.001 <.001
 TG/TT N 11 (19.3%) 10 (13.0%) 1.39 (0.50–3.85) .53  

Y 6 (10.5%) 9 (12.0%) 2.29 (0.71–7.41) .17 .66

SNP, single nucleotide polymorphism; CCyR, complete cytogenetic response; OR, odds ratio; CI, confidence interval; SLC22A1: solute carrier 22A1 (GenBank accession number; 
NC_000006.12); SLC22A1: solute carrier 22A1 (GenBank accession number; NC_000006.12).
aLogistic regression model adjusted for age status.
bP <.05 was considered statistically significant.
cN = 241.
dn = 57.
en = 75.
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and 156T > C haplotypes and major cytogenetic response 

(MCyR), CCyR, loss of response (LOR), or treatment failure. 

Moreover, in our study results, we showed a strong com-

plete linkage disequilibrium (D′ = 1, r2=0.53, LOD = 25.5) 

between SLCO1B3 SNPs, similar to the findings of other 

studies.9,15,16 In the present study, we found no statistically 

significant association between these SNPs and their com-

binations with CML risk. These findings are in concordance 

with those of de Lima et al,16 regarding the association of 

SLCO1B3 polymorphisms and CML risk. 

We observed considerable differences between the male 

and female groups. First, the mean age of nonresponder 

females was significantly higher than that in nonresponder 

males (48.1 years vs 39.5 years). Secondly, the female 

group with the SLC22A1c.1222AG genotype has signifi-

cantly increased risk of IM resistance, unlike the group of 

males with that genotype. Although these results have not 

been reported so far, these differences between females 

and males appear to be due to the effect of female hor-

mones, such as progesterone, on drug transporters.

Some study reports, such as Vasconselos et al,42 indicate 

that an efflux transporter, P-glycoprotein (Pgp), has low ac-

tivity in young females and that synthetic progestins inhibit 

Pgp, in vitro and ex vivo. However, there is no report of such 

effect on influx transporters. 

Our study is the first in the literature to show the joint effect 

of influx-transporter genes and smoking on CML risk and IM 

resistance. In general, few studies have been conducted on 

SNP Current or Ever 
Smoking

Controls Patients Adjusted OR 
(95% CI)

P Valuea,b P Value, Bonferroni 
Correctedb

 AA N 35 (61.4%) 26 (34.7%) 1 [reference]   
Y 11 (19.3%) 39 (52.0%) 4.77 (2.06–11.06) <.001 <.001

 GA N 8 (14.0%) 5 (6.7%) 0.85 (0.25–2.91) .79 >.99
Y 3 (5.3%) 5 (6.7%) 2.25 (0.49–10.26) .30 >.99

SLCO1B3c.334T > G
 GG N 32 (56.1%) 21 (28.0%) 1 [reference]   

Y 8 (14.0%) 35 (46.7%) 6.66 (2.59–17.14) <.001 <.001
 TG/TT N 11 (19.3%) 10 (13.0%) 1.39 (0.50–3.85) .53  

Y 6 (10.5%) 9 (12.0%) 2.29 (0.71–7.41) .17 .66

SNP, single nucleotide polymorphism; CCyR, complete cytogenetic response; OR, odds ratio; CI, confidence interval; SLC22A1: solute carrier 22A1 (GenBank accession number; 
NC_000006.12); SLC22A1: solute carrier 22A1 (GenBank accession number; NC_000006.12).
aLogistic regression model adjusted for age status.
bP <.05 was considered statistically significant.
cN = 241.
dn = 57.
en = 75.

this issue. In our study findings, neither the polymorphisms by 

themselves nor their combinations had any role in CML risk; 

however, the association of transporter polymorphism with CML 

risk was dependent on smoking status. This result is compatible 

with those of Kim HN et al,20 namely, that the relationship of the 

GSTT1 polymorphism with AML risk is dependent on smoking 

status. In 1 study report,43 it was revealed that there was a 

higher probability of survival and lower rate of disease progres-

sion in nonsmokers than smokers among patients with CML, as 

well as a similar molecular response rate in the 2 groups. 

Another study report3 has discussed the association of the 

smoking–metabolizing genes interaction with CML risk. 

Taken together, previous data17 have suggested that cigarette 

smoke can inhibit expression and/or activity of SLC22A1 

and SLCO1B3. Such changes may be attributed to cigarette 

smoke–induced alteration of pharmacokinetics. It seems that 

cigarette smoke changes the expression and activity of the 

transporter and reduces the uptake function of the IM into 

the cells by influx transporters and causes drug resistance. 

In conclusion, our findings have revealed the impact of 

SLC22A1, SLCO1B3 polymorphisms on cytogenetic response 

to IM, and also the influence of SNP combinations and the joint 

effect of SNPs and smoking as a synergistic factor affecting 

treatment response and CML risk. Also, we demonstrated the 

usefulness of the pharmacogenetic-environmental approach for 

predicting the clinical outcome of IM therapy, which may help in 

personalized treatment in patients with CML. LM
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